APPENDIX: PROOF FOR EQ. @

In this section, we provide the step-by-step derivation for Eq. @ We aim to compute the gradient of the loss function £ ()
with respect to a specific logit parameter ¢, , associated with action a. a denotes the specific action index associated with
the logit parameter 6, , currently being updated (the target of the gradient), whereas a’ is the random variable representing
actions sampled from the policy my(-|s) used to calculate the expectation.

Recall the loss function defined as the negative expected soft value:

Lr(0) = —Earmy(0)lg(s,a)] = = > mo(a'[s)g(s, ')
a’eA
where g(s,a’) = Qp(s,a’) — alogmy(a’ls).
Using the derivative of the softmax function (Lemma 2 from [14]), we have:

) — (1) (14’ = ) = mo(als)

Now, we compute the gradient Vg, L (6):
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=— > m(dls) (1{a' = a} — mo(als)) g(s,a)
a’'€A
= —Eory(s) [(1{a" = a} —ma(als)) g(s,a’)] (Definition of Expectation)
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To simplify this expectation, we expand the summation by splitting it into the case where o’ = a and a’ # a:

caLa(8) = — |mo(als)(1 —mg(als))g(s,a) + Y mo(a|s)(0 — mo(als))g(s,a’)
a'#a

= — |mo(als)g(s,a) = mo(als)’g(s,a) = Y mo(a'|s)ma(als)g(s,a’)
a'#a

= — |mg(als)g(s,a) — me(als) | me(als)g(s,a) + Z mo(a'|s)g(s,a’)
a’'#a

= — |malals)g(s,a) — ma(als) Y mo(a'|s)g(s,a’)

a’'€A
L Vi(s)
= —my(als) (9(s,a) — Vx(s))
= —mp(a|s)Ason(s, a)

This completes the derivation, confirming that the gradient descent update direction is proportional to the policy probability
weighted by the soft advantage.



