
APPENDIX: PROOF FOR EQ. (6)
In this section, we provide the step-by-step derivation for Eq. (6). We aim to compute the gradient of the loss function Lω(ω)

with respect to a specific logit parameter ωs,a associated with action a. a denotes the specific action index associated with
the logit parameter ωs,a currently being updated (the target of the gradient), whereas a→ is the random variable representing
actions sampled from the policy εε(·|s) used to calculate the expectation.

Recall the loss function defined as the negative expected soft value:

Lω(ω) = →Ea→↑ωω(·|s)[g(s, a
→)] = →

∑

a→↓A
εε(a

→
|s)g(s, a→)

where g(s, a→) = Qϑ(s, a→)→ ϑ log εε(a→|s).
Using the derivative of the softmax function (Lemma 2 from [14]), we have:

ϖεε(a→|s)

ϖωs,a
= εε(a

→
|s) (1{a→ = a}→ εε(a|s))

Now, we compute the gradient ↑εs,aLω(ω):

↑εs,aLω(ω) = →

∑

a→↓A

ϖεε(a→|s)

ϖωs,a
g(s, a→)

= →

∑

a→↓A
εε(a

→
|s) (1{a→ = a}→ εε(a|s)) g(s, a

→)

= →Ea→↑ωω(·|s) [(1{a
→ = a}→ εε(a|s)) g(s, a

→)] (Definition of Expectation)

To simplify this expectation, we expand the summation by splitting it into the case where a→ = a and a→ ↓= a:

↑εs,aLω(ω) = →



εε(a|s)(1→ εε(a|s))g(s, a) +
∑

a→ ↔=a

εε(a
→
|s)(0→ εε(a|s))g(s, a

→)





= →



εε(a|s)g(s, a)→ εε(a|s)
2g(s, a)→

∑

a→ ↔=a

εε(a
→
|s)εε(a|s)g(s, a

→)





= →



εε(a|s)g(s, a)→ εε(a|s)



εε(a|s)g(s, a) +
∑

a→ ↔=a

εε(a
→
|s)g(s, a→)









= →




εε(a|s)g(s, a)→ εε(a|s)

∑

a→↓A
εε(a

→
|s)g(s, a→)

︸ ︷︷ ︸
Vε(s)





= →εε(a|s) (g(s, a)→ Vω(s))

= →εε(a|s)Asoft(s, a)

This completes the derivation, confirming that the gradient descent update direction is proportional to the policy probability
weighted by the soft advantage.


